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Preface 
 

 The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-based 

Practice Centers (EPCs), sponsors the development of evidence reports and technology 

assessments to assist public- and private-sector organizations in their efforts to improve the 

quality of health care in the United States. The reports and assessments provide organizations 

with comprehensive, science-based information on common, costly medical conditions and new 

health care technologies. The EPCs systematically review the relevant scientific literature on 

topics assigned to them by AHRQ and conduct additional analyses when appropriate prior to 

developing their reports and assessments. 

 To improve the scientific rigor of these evidence reports, AHRQ supports empiric research 

by the EPCs to help understand or improve complex methodological issues in systematic 

reviews. These methods research projects are intended to contribute to the research base and be 

used to improve the science of systematic reviews. They are not intended to be guidance to the 

EPC program, although may be considered by EPCs along with other scientific research when 

determining EPC program methods guidance. 

 AHRQ expects that the EPC evidence reports and technology assessments will inform 

individual health plans, providers, and purchasers; as well as the health care system as a whole 

by providing important information to help improve health care quality. The reports undergo 

peer review prior to their release as a final report. 

 We welcome comments on this Methods Research Project. They may be sent by mail to the 

Task Order Officer named below at: Agency for Healthcare Research and Quality, 540 Gaither 

Road, Rockville, MD 20850, or by e-mail to epc@ahrq.hhs.gov. 

 

 

Carolyn M. Clancy, M.D. Jean Slutsky, P.A., M.S.P.H. 

Director Director, Center for Outcomes and Evidence 

Agency for Healthcare Research and Quality Agency for Healthcare Research and Quality 

 

Stephanie Chang, M.D., M.P.H. Suchitra Iyer, Ph.D. 

Director Task Order Officer 

Evidence-based Practice Program Center for Outcomes and Evidence 

Center for Outcomes and Evidence Agency for Healthcare Research and Quality 

Agency for Healthcare Research and Quality 

  



STRUCTURED ABSTRACT 

Background Systematic reviews need to be updated frequently to maintain their relevance. 

Results of earlier screening efforts should be useful in reducing the screening of thousands of 

newer citations for articles relevant to efficacy/effectiveness and adverse effects (AEs). 

Methods We collected 14,700 PubMed citation classification decisions from a 2007 systematic 

review of interventions to prevent fractures in persons with low bone density (LBD). We also 

collected 1,307 PubMed citation classification decisions from a 2006 systematic review of off-

label uses of atypical anti-psychotic drugs (AAP). We extracted explanatory variables from the 

MEDLINE citation related to key concepts, including the intervention, outcome, and study 

design. We used the data to empirically derive statistical models (including sparse generalized 

linear models with convex penalties[GLMnet] and gradient boosting machine [GBM]) that 

predicted inclusion in the AAP and LBD reviews. We evaluated performance on the 11,003 

PubMed citations retrieved for the LBD and AAP updated reviews. 

Measurements Sensitivity (percentage of relevant citations corrected identified), positive 

predictive value (PPV, percentage of predicted relevant citations that were truly relevant), and 

workload reduction (percentage of screening avoided). 

Results GLMnet- and GBM-based models performed similarly, with GLMnet (results shown 

below) performing slightly better. The AAP and LBD models yielded sensitivities of 0.921 and 

0.905 and PPVs of 0.185 and 0.102 when predicting articles relevant to their respective 

efficacy/effectiveness analyses (using a threshold of p ≥0.02). The AAP model (sensitivity of 

0.981) substantially out-performed the LBD model (0.685) when identifying adverse effect(AE)-

relevant articles. When attempting to maximize sensitivity, the AAP and LBD models achieved 

high sensitivities (0.99 and 1.0) while reducing projected screening by 55.4 % (1990/3591 

articles) and 63.2% (4,454/7,051) respectively. 

Conclusions We evaluated statistical classifiers that used previous classification decisions and 

key explanatory variables derived from MEDLINE indexing terms to predict inclusion decisions 

on two simulated systematic review updates. The system achieved higher sensitivity in 

evaluating  efficacy/effectiveness articles than in evaluating LBD AE articles. We estimated that 

these algorithms could reduce workload associated with screening updated search results for all 

relevant efficacy/effectiveness and AE articles by more than 50% with minimal or no loss of 

relevant articles. After refinement to include text features, these document classification 

algorithms could help researchers maintain up-to-date reviews. 

 

  



Executive summary 
Background 

Systematic reviews need to be updated to maintain their relevance, but these updates are often 

impeded by the need to screen thousands of citations to locate the 1-10% that are relevant. Such 

effort may match or exceed that involved in the original review. Prior studies have used machine 

learning methods to reduce the burden of systematic review screening but have not simulated 

formal updating. 

Objective 

We aimed to create a prototype system for assisting researchers with preparing formal updates of 

AHRQ reports. In this report, we describe our use of reviewer decisions from two AHRQ-

sponsored comparative effectiveness reviews to empirically derive statistical models that predict 

article relevance; we then evaluated these models’ performance identifying relevant articles from 

the literature searches retrieved for the updated reviews. We created statistical models (based on 

gradient boosting machine-GBM and generalized linear models with convex penalties) that 

predicted an article’s relevance based on how its indexing terms described a select number of 

key concepts (such as publication type, intervention, and outcome). The key challenge is 

accounting for how search strategies, therapies, outcomes, research personnel, and overall 

objectives may have changed from the original to the updated study. We aim to overcome these 

issues by changing specific therapies and outcomes into more abstract variables, which should 

make predictive modeling more stable over time. 

Methods 

We obtained PubMed citations retrieved by the AHRQ Southern California Evidence-Based 

Practice Center (SCEPC) for two review topics (including the early and updated search results): 

the comparative effectiveness of interventions in preventing fractures in persons with 

osteoporosis (henceforth referred to as Low Bone Density or LBD) and the efficacy and 

comparative effectiveness of off-label uses of atypical antipsychotics (AAP). We considered 

articles to be “relevant" if they passed the second stage screening process and would have been 

considered for analyses of either efficacy/effectiveness or adverse events (AEs). We did not 

exclude duplicates or studies included in prior meta-analyses because these studies were not 

excluded for intrinsic problems in study design or target population. We did not evaluate 

PubMed citations that had not yet been assigned MEDLINE indexing information (such as 

MeSH and Publication Type terms). Of note, solely re-running the original search strategies for 

later time periods would have tested whether earlier citations are useful in predicting more recent 

citations. However, by using all articles retrieved from the revised search strategies, we 

attempted to approximate “real-world” updating, for which algorithms must account for changes 

in reviewer goals over time. 

The body of articles included in the original LBD report (which we refer to as the training 

document literature) consisted of 14,700 retrieved articles, of which 382 articles would have 

passed the second stage screening--218 for efficacy/effectiveness and 279 for AEs (some articles 

included data on both efficacy/effectiveness and AEs). The LBD update corpus consisted of 

7,051 retrieved articles (of which 127 would have passed the second stage filter: 63 for 

efficacy/effectiveness and 92 for AEs). The AAP training corpus consisted of 1,307 retrieved 

articles, of which 98 articles would have passed the second stage filter-82 for efficacy and 91 for 



AEs. The AAP update consisted of 3,591 retrieved articles, of which 116 would have passed the 

second stage filter--101 for efficacy and 105 for AEs. 

We then created a limited set of important predictor variables using key MEDLINE Subject 

Heading (MeSH) indexing terms and associated subheadings. Prior study designs used all terms 

from the index and abstract (i.e., a “bag of words” approach), and used various machine learning 

algorithms to reduce the number of explanatory variables when modeling relevance. We 

hypothesized that a limited set of variables that were tightly related to certain key concepts 

would have substantial predictive power when used to model relevance. We derived these key 

terms from the search strategy of each systematic review; in essence, our approach uses both 

statistical methods and researcher knowledge (via the search strategy) to make the modeling 

problem tractable.   Furthermore, transforming specific concepts such as "alendronate" and 

"fractures" into abstractions such as "intervention" and "outcome" should allow us to account for 

changes in outcomes and interventions over time. We identified key MeSH terms by matching 

terms in the search strategies to MeSH terms within the MeSH database. We then created a set of 

92 binary explanatory variables representing whether intervention and outcome terms were 

present in the MEDLINE citation, and how they were described. In addition, we created a set of 

29 binary explanatory variables related to article-level characteristics including demographic 

group (gender and age), treatment target (human, animal, in vitro study, and others), and 

publication type (review, randomized controlled trial [RCT], clinical trial, meta-analysis, and 

others), and presence of intervention or outcome terms in the title and whether “randomized 

controlled trial” or “meta-analysis” was mentioned in the title or abstract. 

We then modeled the outcome (inclusion in the final report for either efficacy or AEs) as a 

function of the above explanatory variables; the underlying models were adapted from gradient 

boosting machine (GBM) and sparse generalized linear models with convex penalties (GLMnet). 

GBM is a non-parametric tree-based approach while GLMnet is based on parameterized 

generalized linear models specifically created to produce sparser models by using convex 

penalties on the coefficients. We also created a "hybrid" approach that used the maximum 

prediction probability of relevance from both approaches (GBM- or GLMnet-based). This is 

equivalent to an approach that rejects only if both GBM- and GLMnet-based approaches reject.  

To simulate how such algorithms might perform in a true update, we generated models using the 

initial search results while being blind to the true update search results. For each model, we 

generated prediction scores for the updated search (2006-2010 literature for LBD and 2007-2010 

for AAP—the test data) using the models and thresholds generated above. We generated a set of 

predicted relevant and irrelevant articles for the LBD and AAP updates that we compared against 

decisions that members of the EPC team generated independently. We then calculated 

performance on the updated results: sensitivity (percentage of relevant articles retrieved, also 

known as recall), positive predictive value (PPV--percentage of articles predicted to be relevant 

that were truly relevant, also known as precision), and the percentage of literature search 

screening that might have been avoided had this predictive model been used exclusively. We 

evaluated performance at multiple probability thresholds. There is no perfect threshold, because 

neither error minimization nor sensitivity maximization can be considered absolute goals; a 

strategy that rejected all articles might have an error rate of 1% (though all would be false 

negatives) while a strategy accepting all articles would have 100% sensitivity (though low PPV). 

To balance these objectives and conform to researcher preferences, we chose to judge primary 

results against a probability threshold of p≥0.02 because this threshold appeared to substantially 



reduce the error rate while preserving sensitivity. We also evaluated the performance of these 

approaches (GLMnet and GBM) by comparing their Receiver Operating Characteristic (ROC) 

curves visually and via a non-parametric approach described in DeLong and colleagues. 

Results 

There were substantial and statistically significant differences in the means of key variables 

between the original and updated searches, and between categories of each search (excluded, 

included in efficacy analysis, included in AE analysis, and included in both analyses). These 

differences suggest that combinations of variables could be used to distinguish between relevant 

and irrelevant studies; however, the design of the search differed between the update and original 

searches, which made modeling more difficult.  

Model performance differed slightly between the three approaches (GBM, GLMnet, and hybrid), 

although GLMnet performed slightly better overall. Results below refer to GLMnet. For efficacy 

analyses, performance in predicting relevant articles was similarly strong for both the AAP and 

LBD reviews. The vast majority of irrelevant citations were assigned relevance probabilities of 

less than 0.02. The AAP model yielded a sensitivity of 0.921 and PPV of 0.185 when predicting 

articles relevant to the AAP efficacy update. In considering articles relevant to efficacy for the 

LBD update, the predictive model achieved sensitivity of 0.905 and PPV of 0.102 (using the 

p≥0.02 threshold).  

For the AE analyses, performance in predicting relevant articles was strong for AAP but not for 

LBD. In the AAP analysis, the model achieved sensitivity for AE-relevant articles of 0.981 and 

PPV of 0.09 at a threshold of p≥0.02. However, in the LBD model, we were able to predict AE-

relevant articles only with a substantially reduced sensitivity (0.685) for a similar PPV (0.116). 

When we analyzed articles missed for the AE analysis, we noted that there were relatively few 

relevant large observational studies (cohort and case-control studies) in the original review. As a 

result, the LBD model assigned lower probabilities to observational studies in the update as well. 

However, observational studies were more important in the update because the SPEPC 

researchers focused on several newly identified AEs that were largely studied in cohort and case-

control studies. 

We also simulated (using GLMnet) a process for estimating potential workload reductions while 

maximizing sensitivity in identifying all articles relevant to AE and efficacy analyses. Sensitivity 

and PPV for a particular threshold were determined by selecting articles if the maximum 

predicted relevance from either model (efficacy or AE) exceeded the threshold. The AAP model 

yielded projected sensitivity exceeding 0.99 while the proportion of title/abstract screening saved 

was 55.4 % or 1990/3591 articles. The LBD model produced perfect sensitivity when applied to 

the update and decreased the projected article screening burden from 7,051 to 2,597 (63.2%). 

The GLMnet method seemed to perform slightly better than GBM in this context. The AUC for 

the GLMnet method (in the AAP study) was 0.943 (95% CI: 0.927- 0.960) vs. 0.925 (95% CI: 

0.899-0.950) with GBM. The p-value for null hypothesis of equality was 0.007. Similarly, the 

AUC for the GLMnet method (in the LBD study) was 0.954 (95% CI: 0.943-0.965) vs. 0.947 

(95% CI: 0.933 -0.961) for GBM. In the LBD study, p-value for null hypothesis of equality was 

0.06. Both results suggest that the ROC curves differed between the two studies; in addition, 

GLMnet seems to perform somewhat better than GBM visually as well. Still, it would be 

difficult to establish GLMnet’s superiority in this context (systematic reviewing updating) 

without further studies. 



SCEPC researchers independently evaluated articles in the update that were included in the final 

reports but were assigned relatively low probability scores (p≤0.02) by the statistical classifiers. 

Nearly all false negatives were articles that were not tagged as randomized trials by MEDLINE, 

and 26/29 were from the LBD update. 

Conclusions 

In this report we utilized the large numbers of previously screened documents for a systematic 

review to develop a model that predicted whether citations retrieved for an update search would 

have met final inclusion criteria for the update. We tested several approaches based on the GBM 

and GLMnet statistical methods. Our approach achieved its best performance predicting 

relevance for efficacy/effectiveness articles; it performed worse when predicting articles relevant 

to the AE analysis for the LBD update. However, we estimated that these algorithms could 

reduce workload associated with screening updated search results for relevant 

efficacy/effectiveness and AE articles by more than 50% with minimal or no loss of relevant 

articles. Furthermore, just one article (from the AAP update) would have been excluded. EPC 

researchers might have been able to retrieve this trial because it was referenced in a relevant 

article and would plausibly have been caught using the researchers’ analyses of references 

accepted in the final reports. Based on the slight differences in model performance between the 

GBM, GLMnet, and hybrid approaches, underlying data limitations may pose a more substantial 

challenge than model selection in the future. 

Future research is needed on methods for reducing the likelihood of false negatives further (thus 

reducing the tradeoff between missed articles and workload reductions). Promising methods 

include incorporating active learning approaches and using text features extracted from the title 

and abstract to improve capture of study design details, such as RCT design or meta-analysis. 

We will also need to test this method with other systematic review topics. After we validate this 

work more broadly, we hope to integrate a more refined system into the workflow of systematic 

review researchers. A more refined system could allow researchers to update their reviews more 

frequently and efficiently. 



INTRODUCTION 

Clinicians, clinical guideline developers, regulatory agencies, and research granting agencies all 

use systematic reviews to determine appropriate clinical practice and research needs. As such, 

systematic reviews need to be updated to maintain their utility; static reviews potentially ignore 

new research that could change the results of a systematic review, and thus clinical practice, 

substantially 
1, 2

. Given these concerns, several experts suggested updating systematic reviews 

every 2 years and perhaps more quickly for rapidly advancing fields 
1, 3, 4

. 

In actual practice, a minority of systematic reviews is updated that frequently 
5, 6

. Several 

researchers have explored why updating frequency may fall short of the standard. First, updates 

may entail substantial cost, as the entire process of literature retrieval, filtering, data extraction, 

and interpretation needs to be repeated. In several AHRQ comparative effectiveness reviews of  

rapidly advancing fields, researchers needed to screen thousands of citations to locate the 1-10% 

that were relevant 
7-11

; such efforts matched or exceeded those involved in the original studies. 

Second, validated updating protocols and algorithms for determining true signals are still under 

development 
12, 13

. Finally, getting updates published in peer-reviewed journals may be more 

difficult than getting the original review published 
6
. 

As a first step toward automating part of this process, several studies described information 

retrieval technologies aimed at reducing the human burden of systematic review creation and 

updating by limiting the number of retrieved citations that require initial human review 
14, 15

. 

Both studies noted that predicting “rare” outcomes is difficult and used different approaches to 

try to mitigate such issues. Cohen et al. (2006) constructed explanatory variables using an 

unstructured approach that incorporated word frequencies in the title and abstract as well as term 

frequencies of combinations of all MEDLINE indexing terms (from the publication type and 

Medical Subject Heading—MeSH—fields) and subheadings. The authors then used a voting 

perceptron-based classifier to model relevance as a function of these many thousands of potential 

explanatory variables. A perceptron is an equation for creating predictions using linear 

combinations of explanatory variables (i.e., a feature set). When applied to explanatory features 

in each article, the perceptron generates predictions for whether a document should be included 

or excluded. Cohen et al. (2006) produced a series of perceptrons that generated separate 

estimates for each article; the resulting prediction is based on which classification 

(relevant/irrelevant) received the greatest number of “votes” from the individual perceptrons. 

The study reported work reductions for 11 of the 15 topics while maintaining 95% sensitivity for 

relevant articles; for 3 of those 11, the reduction was more than 50%. 

Wallace et al. (2011) used an active-learning strategy to aid the creation of new systematic 

reviews 
15, 16

. Similar to the above study, the model predicts relevance based on independent 

variables derived from multiple sources including MeSH and text. However, they used a process 

that interactively builds a classifier using expert decisions on the most uncertain cases; the 

underlying hypothesis is that decisions chosen on the most uncertain instances produce better 

information for a given cost (reviewer time). Wallace et al (2010) were able to reduce the 

number of citations that needed to be screened in a simulated de novo review by roughly 50% 

while retaining 100% of relevant articles. 

We hypothesized that a more structured approach might substantially assist systematic review 

updating, because original reports frequently generate thousands of training observations. We 

further hypothesized that the effort MEDLINE researchers put into indexing key concepts with 



subheadings can be leveraged for greater predictive power, without requiring significant human 

reviewer input.  

MeSH indexing identifies key concepts in articles, which has proven very useful as a tool for 

retrieving literature. However, MeSH indexing further describes those concepts with descriptive 

subheadings ("chemically induced", "adverse effects", "epidemiology", etc.). Extracting data 

solely on a few key variables related to publication type, intervention, and outcome may have 

greater power, counterbalancing the slightly greater upfront time required for identifying key 

concepts beforehand. For example, if researchers are interested whether alendronate is safe and 

effective in preventing fractures, the most crucial variables might be those indicating whether the 

indexing term for alendronate is tagged with “therapeutic use” and whether the corresponding 

term for fracture is associated with “prevention and control”. These and other key variables 

might be imperfect individually but their combination could yield a model that robustly predicts 

relevance. We published earlier work validating this approach for extracting articles that tested 

whether particular drugs caused any type of adverse effect (AE) regardless of study design 
17

. In 

this study, we adapt our earlier approach to make it useful for locating studies relevant to 

comparative effectiveness reviews, which require all articles assessing either 

efficacy/effectiveness or AEs using particular study designs. 

We tested this hypothesis using two comparative effectiveness reviews. The first concerned the 

prevention of fractures in patients with osteopenia or osteoporosis (low bone density [LBD]) 

conducted by the Southern California Evidence-based Practice Center (SCEPC), under contract 

to the Agency for Healthcare Research and Quality (AHRQ) 
9, 10

. EPC researchers conducted the 

initial systematic review in 2006 using literature indexed in multiple sources including PubMed. 

As it became apparent that the field was advancing rapidly, the EPC group and AHRQ 

determined that an update was necessary; an updated literature search was conducted in 2010 

that searched for new literature (2006-2010) covering the same interventions and conditions, as 

well as all literature for newly relevant interventions and conditions. The second systematic 

review covered off-label indications for atypical anti-psychotic drugs (AAP) 
8
. The first AAP 

review covered literature published until December 2006, and the update covered literature 

published subsequent to that date. In each case, we aimed to use the earlier study’s reviewer 

decisions to create a predictive model that could classify articles in the updated search results as 

relevant for efficacy/effectiveness analyses, relevant for AE analyses, or irrelevant for both. 

The key challenge in this study is that the training (original search) and test (updated search) data 

are independent samples. By contrast, Cohen et al. (2006) simulated an update from a single 

sample of articles and Wallace et al. (2010) simulated a de novo review. In both the LBD and 

AAP reviews, new conditions and interventions were added and others were dropped. 

Furthermore, both research personnel and study objectives changed between the first and 

updated review. To overcome such challenges, we attempted to make the data as abstract as 

possible - representing concepts such as "intervention" and "outcome" - as opposed to specific 

drugs and outcomes. To simulate how such a system might perform in a true update, we 

generated a model using the initial search results while being blinded to the true update search 

results. We then evaluated performance in predicting relevance to the updated search results.  

METHODS 

Data Sources 



We obtained PubMed citations retrieved by the SCEPC (until January 2011) for its review of the 

comparative effectiveness of interventions in preventing fractures in persons with osteoporosis 

(LBD) and its review of the efficacy and comparative effectiveness of off-label uses of atypical 

antipsychotics (AAP). MEDLINE citations were retrieved in plain text format and parsed using 

Python 2.7.2 (Python Software Foundation, http://python.org); specifically, we used the 

Biopython 1.52 package within Python to retrieve full MEDLINE citations from Entrez PubMed 

databases.
18

 We did not evaluate PubMed citations that had not yet been assigned MEDLINE 

indexing information (such as MeSH and Publication Type terms). We also excluded articles 

obtained exclusively from non-PubMed databases (such as PsycInfo and EMBASE). Excluding 

non-PubMed databases is a limitation whose importance varied by study. For the LBD update, 

all relevant studies were found in PubMed. For the AAP update, 31 articles included in the final 

report were not located in PubMed. Of those, 14 were Scientific information packets (that will 

always need to reviewed), 9 were identified by mining references of included reports, and 8 were 

found in poster presentations. Of note, solely re-running the original search strategies for later 

time periods would have tested whether earlier citations are useful in predicting more recent 

citations. However, by using all articles retrieved from the revised search strategies, we 

attempted to approximate “real-world” updating, for which algorithms must account for changes 

in reviewer goals over time. 

The search strategies and primary selection criteria for LBD have been discussed extensively in 

other reports 
8-10

. Briefly, in the LBD study, the interventions consisted of multiple drugs 

(including bisphosphonate drugs, calcitonin, selective estrogen receptor modulators, parathyroid 

hormone derivatives, and menopausal hormone therapy) and exercise therapy. The primary 

outcomes of interest were fractures and AEs but the search strategy also attempted to capture 

articles discussing predisposing conditions by searching for terms such as osteoporosis, 

osteopenia, and bone mineral density, as well as fractures. The search was limited to English 

language articles, but no limits were placed on publication type. The initial search (1966-2006) 

yielded 14,700 articles with full MEDLINE citations, and the updated search (containing a 

slightly different set of interventions) retrieved 7,051 articles with full MEDLINE citations 

(spanning 2006-2010). We did not analyze 219 PubMed articles from the LBD updated search 

that were not indexed in MEDLINE, as our algorithms currently require MEDLINE indexing 

information. 

The search strategies and selection criteria for AAP have also been discussed in other reports 

(Shekelle, Maglione et al. 2007). In the original AAP review, the interventions consisted of 

atypical antipsychotic drugs, including olanzapine, risperidone, quetiapine, and clozapine. 

Outcomes of interest included dementia, obsessive-compulsive disorder, and post-traumatic 

stress disorder, and outcomes could be excluded if re-classified by the US Food and Drug 

Administration (FDA) as an approved indication. The search conducted in 2006 yielded 1,307 

MEDLINE citations requiring human classification. The updated search added outcomes such as 

anorexia nervosa, bulimia, and substance abuse to the list of off-label uses under consideration; 

3,591 MEDLINE citations were retrieved. We did not analyze 19 PubMed articles from the AAP 

original search and 142 PubMed articles from the updated search that were not indexed in 

MEDLINE. 

In both reviews, citations were filtered in two stages: the first stage excluded articles that were 

obviously irrelevant based on reading the title and/or abstract; the second stage excluded 

additional studies after reading or screening the full text 
8-10

. All remaining articles were deemed 



potentially useful for analyses of efficacy/effectiveness or AEs (or both). At the second stage, 

articles were excluded for more critical reasons (e.g., inappropriate study design, no mention of 

fractures, inappropriate intervention, outcome was an on-label indication, etc.) and reasons of 

timing (duplicate data, inclusion in prior meta-analysis). We considered the latter articles to have 

passed a second stage of review because they were not excluded for intrinsic problems in study 

design or target population. 

In this study, we primarily concerned ourselves with the second-stage inclusion decisions; we 

considered articles to be “relevant’ if they passed the second stage screening process and were 

considered for analyses of either AEs or efficacy. We did not aim to include all articles that 

passed the first-stage filter because these articles were not important to the final results; indeed, 

reducing this number was a key researcher goal as all articles passing the first stage required a 

time-consuming full-text review. 

During the initial modeling phase, we had access to researcher decisions on the original search 

results. The LBD training document literature consisted of 14,700 retrieved articles, of which 

382 articles would have passed the second stage filter: 218 for efficacy/effectiveness and 279 

articles for AEs. The LBD update body of literature consisted of 7,051 retrieved articles (of 

which 127 would have passed the second stage filter: 63 for efficacy/effectiveness and 92 for 

AEs). The AAP training literature consisted of 1,307 retrieved articles, of which 98 articles 

would have passed the second stage filter: 82 for efficacy/effectiveness and 91 for AEs. The 

AAP update consisted of 3,591 retrieved articles, of which 116 would have passed the second 

stage filter:101 for efficacy/effectiveness and 105 for AEs. We blinded the statistical learning 

model to researcher decisions involving the updated search results; as such, we could effectively 

simulate a true update in which the update search results would not have been known. 

Processing MEDLINE Citations 

Each fully indexed MEDLINE citation contains several (usually 10-15) indexing terms; each 

term is often modified by one or more subheadings. As described above, we aimed to construct a 

limited set of important variables using key MeSH indexing terms and associated subheadings 

that are tied to the interventions and outcomes of interest. (Figure 1 shows how a subset of 

variables was created from one citation.) We identified key MeSH terms by matching all terms in 

the various search strategies to terms within the MeSH database.
19

 After removing erroneous 

terms, we separated matching terms into two categories: intervention terms and outcome terms. 

We then created a set of 46 binary explanatory variables based on whether the exact intervention 

or outcome terms were present in the MEDLINE citation and linked to particular subheadings. 

We then created a set of 46 matching explanatory variables based on whether other interventions 

or outcomes (that are not the outcomes and interventions of interest) were present in the 

MEDLINE citation and linked to particular subheadings. For example, if the only outcome of 

interest in a particular article is "fractures," if "fractures" are indexed in the citation in 

association with "drug therapy", we set the variable "outcome_drug_therapy" equal to one. 

However, if in the same article, "rheumatic diseases" is also indexed in conjunction with "drug 

therapy", we would set a variable "other_outcome_drug_therapy" equal to 1 as well. The latter 

would indicate that other diseases are being discussed in the article, which could influence the 

article's relevance score. We used a similar process for interventions. 



 

In addition, we created a set of 29 binary explanatory variables related to broader characteristics 

from MeSH indexing terms and publication type terms-- including demographic group (gender 

and age), treatment target (human, animal, in vitro study, and others), and publication type 

(review, clinical trial, meta-analysis, and others). Finally we created variables indicating whether 

any intervention or outcome was explicitly mentioned in the title or in the article's MeSH index, 

whether the article was particularly short (1 or 2 pages in length), and whether “randomized 

controlled trial” or “meta-analysis” was mentioned in the title or abstract. Our approach is 

parsimonious in that we used only these 121 variables, instead of the full text approach that 

would have to deal with potentially thousands of explanatory variables and consequently would 

have the potential for overfitting, resulting in possible loss of predictive power. 

Statistical Classification  

Solely using those articles retrieved in the original search (1966-2005/6 literature–the training 

data), we modeled relevance (the second-stage screening decision) as a function of the 

explanatory variables discussed above. All statistical modeling was conducted in R 2.10 (R 

Foundation, http://www.r-project.org/). We constructed separate models for predicting inclusion 

in efficacy/effectiveness or AE analyses because article characteristics predictive of relevance 

were likely to be quite different between the two analyses. For both, we aimed to retain the 

maximum number of relevant citations (true positives), while minimizing the number of 

irrelevant citations detected (false positives). We also evaluated our models’ performance in 

predicting inclusion in either analysis. The latter analysis is most relevant to current AHRQ 

practice, as both efficacy/effectiveness and AE analyses are required for comparative 

effectiveness reviews. However, we show disaggregated results as well because other researchers 

may be interested in one type of study. 

We determined each model specification (efficacy/effectiveness and AE analyses for both LBD 

and AAP) using several statistical methods. The first model we considered was gradient-boosting 

http://www.r-project.org/


machine (GBM), a non-parametric tree based prediction approach based on boosting 
20, 21

. In the 

general boosting framework, models are built in a stage-wise fashion, with weak (i.e. moderately 

inaccurate) classifiers combined to create a strong final classifier. GBM is a specific 

implementation of boosting and consists of a general, automated, data-adaptive modeling 

algorithm that can estimate the nonlinear relationship between a variable of interest and a large 

number of covariates using a sequence of simple classifiers combined in an optimal way. The 

algorithm generated 5000 sequential classification trees involving at most 3 variables in each tree 

(Figure 2).  

 

A single, simple classifier as above is inadequate for generating accurate predictions. In the 

example given in Figure 2, it is obvious that automatically discarding articles not tagged as RCTs 

would exclude relevant articles (such as systematic reviews). However, the GBM algorithm 

generates a model based on a series of simple classifiers, including, for example, decisions trees 

that discard articles that are not systematic reviews. The algorithm sequentially evaluates each 

simple model and assigns it a weight computed to minimize the entire model's overall loss 

function (in this case based on the logistic function). The final model therefore includes all 

simple models, but each simple tree is assigned a weight proportional to its accuracy. By taking a 

weighted average across simple, weak classification trees, it is possible to generate more 

accurate predictions. 

We validated the results on these training data using five-fold cross validation (which reduces 

overfitting). Each fold of cross validation randomly selects 20% of the data to serve as test data; 

then the process fits a model on the remaining 80% of the data; finally, model performance is 

measured on the reserved test data. The process is repeated on all 5 folds and one ultimately 

finds the model which would minimize the prediction error averaged across all 5 folds and 

models. This approach reduces both overfitting (using cross validation) and overall performance 

(using boosting). The output results were probabilities that the articles were relevant; we 

examined a receiver operator characteristic (ROC) curve to determine the optimal probability 

threshold for minimizing both false negatives and false positives using only the original search 

results. 



We also used sparse generalized linear models with convex penalties (GLMnet). The GLMnet 

method is a parametric approach in that one fits a linear logistic model with convex penalty on 

the magnitude of coefficients. As above, we model the outcome variable (inclusion in the report 

for efficacy/effectiveness or AEs) as a function of the explanatory variables described above. In 

a standard linear model, the outcome would be made a function of all explanatory variables, but 

this may lead to over-fitting. The Lasso shrinkage and selection method for linear regression 

(and generalizations such as Elastic-Net) minimizes the usual sum of squared errors, with a 

bound on the sum of the absolute values of the coefficients 
22

. The GLMnet method shrinks 

coefficients of less important variables to zero with a more general convex penalty, resulting in 

fewer independent variables that have better predictive power. GLMnet also employs cyclical 

coordinate descent (computed along a regularization path) to efficiently solve these problems 
23

. 

Both algorithms (GLMnet and GBM) outputted prediction probabilities that could be judged 

against the gold standard results obtained by the SPEPC team. Finally, to bridge some of the 

large differences between the parametric GLMnet and non-parametric GBM procedures, we 

created a hybrid approach that would reject articles only if both procedures rejected them. 

Equivalently, we accepted articles if either procedure assigned sufficiently high probability of 

relevance to them. 

We generated prediction scores for the updated searches (2006-2010 literature for LBD and 

2007-2010 for AAP—the test data) using the models and thresholds generated above. We 

generated a set of predicted relevant and irrelevant articles that we compared against decisions 

that members of the EPC team generated independently. We then calculated performance: 

sensitivity (% relevant articles retrieved, also known as recall) and positive predictive value 

(PPV: % predicted relevant articles that were truly relevant, also known as precision). We also 

computed the proportion of literature search screening that might have been avoided had this 

predictive model been used exclusively.  

We evaluated performance at multiple probability thresholds. There is no perfect threshold, 

because neither error minimization nor sensitivity maximization can be considered absolute 

goals; a strategy that rejected all articles might have an error rate of 1% (though all would be 

false negatives) while a strategy accepting all articles would have 100% sensitivity (though low 

PPV).To balance these objectives and conform to researcher preferences, we chose to judge 

primary results against a probability threshold of p≥0.02 because this threshold appeared to 

substantially reduce the error rate while preserving sensitivity. We also evaluated the 

performance of these approaches (GLMnet and GBM) by comparing their Receiver Operating 

Characteristic (ROC) curves visually and via a non-parametric approach described in DeLong 

and colleagues.
24

 Of note, pure statistical comparisons may lead to incorrect inferences because 

the maximizing the Area Under the Curve (AUC) may compromise sensitivity. 

To estimate model variability, we calculated bootstrapped standard errors for the sensitivity and 

PPV results.
25

 We generated 100 models by sampling with replacement from the original 

literature review articles. We then generated 100 sets of predictions by applying each of the 

models to the actual data (from the original and updated reports); we calculated standard errors 

from the resulting simulated sensitivity and PPV estimates . However, at the thresholds discussed 

in the report (p<=.1), the standard errors were extremely small (due to the large sample sizes of 

the training data used to fit the original models) and are not shown for each case. For example, 

for sensitivity at a threshold of 0.1 for the original LBD study (efficacy), the estimated sensitivity 

was 0.995 and the standard error was 0.0008. 



RESULTS 

Literature characteristics 

Table 1 shows the characteristics of the original and updated AAP literature searches; each 

column (original and update) represents both excluded and relevant studies. We compared the 

proportions of each variable within the original and update search results using Fisher’s exact 

test. Substantial and statistically significant differences were observed between the means of 

variables in the AAP original and updated searches. This finding suggests that the composition 

of the search results (if not necessarily the included studies) differed substantially between the 

update and original searches. 

Table 1. AAP characteristics: original vs. update. 

 

Variable Original 
(Count, 

Proportion) 

Update 
(Count, 

Proportion) 

Comparison 

of Means 

(p-value)* 

Number of Studies 1307 3591  

Year 2000.9 2005.7  

    (range) 1972-2006 1988-2011  

Any Outcome In Title 432 (0.331) 1394 (0.388) <0.001 
Any Agent In Title 893 (0.683) 1979 (0.551) <0.001 
Agent & Administration 254 (0.194) 586 (0.163) 0.011 
Agent & Therapeutic Use 937 (0.717) 2334 (0.650) <0.001 
Agent & Toxicity 581 (0.445) 1368 (0.381) <0.001 
Demographic Tags Include Child 233 (0.178) 822 (0.229) <0.001 
Outcome & Complications 104 (0.080) 300 (0.084) 0.681 
Outcome & Drug Therapy 542 (0.415) 1284 (0.358) <0.001 
Outcome & Prevention 5 (0.004) 39 (0.011) 0.024 
Outcome & Psychology 290 (0.222) 648 (0.180) 0.001 
Other Outcome & Psychology 305 (0.233) 657 (0.183) <0.001 
Clinical Trial 375 (0.287) 451 (0.126) <0.001 
Comparative Study 259 (0.198) 608 (0.169) 0.02 
Meta-Analysis 24 (0.018) 83 (0.023) 0.377 
RCT 214 (0.164) 501 (0.140) 0.035 
Text Contains RCT 133 (0.102) 414 (0.115) 0.2 

*P-value derived from Fisher’s Exact Test; RCT, Randomized Controlled Trial 

Table 2 shows the characteristics for the AAP original search by category (excluded, included 

for AE analysis, included only for the efficacy/effectiveness analyses, included for both 

analyses). There are obviously substantial differences, as revealed by the one-way Anova test 

comparing means in all four groups; these differences were highly significant for most key 

variables including "RCT." The importance of each variable is unknown, but the differences 

suggest that combinations of variables could be useful in distinguishing between included and 

excluded studies. 

 



Table 2: Characteristics of the Original AAP Review (by category of article) 

 

Variable Excluded Efficacy 

only 

AE Only Both 

Types of 

Outcomes 

Comparison 

of Means (p-

value)* 

Number of Studies 1209 7 16 75  

Year 2000.8 2002 2003.8 2002.6 nan 

Any Outcome In Title 0.307 0.714 0.312 0.68 <0.001 

Any Agent In Title 0.667 0.714 0.75 0.933 <0.001 

Agent & Administration 0.187 0.286 0.188 0.307 0.077 

Agent & Therapeutic Use 0.706 0.857 0.688 0.88 0.011 

Agent & Toxicity 0.432 0.143 0.938 0.573 <0.001 

Demographic Tags Include Child 0.17 0.286 0.062 0.333 0.002 

Outcome & Complications 0.079 0.143 0 0.107 0.469 

Outcome & Drug Therapy 0.405 0.429 0.375 0.573 0.04 

Outcome & Prevention 0.004 0 0 0 0.939 

Outcome & Psychology 0.207 0.429 0.062 0.48 <0.001 

Other Outcome & Psychology 0.227 0.286 0 0.387 0.002 

Clinical Trial 0.246 1 0.062 0.933 <0.001 

Comparative Study 0.174 0.286 0.625 0.493 <0.001 

Meta-Analysis 0.02 0 0 0 0.576 

RCT 0.108 1 0.062 1 <0.001 

Text Contains RCT 0.086 0.286 0.062 0.347 <0.001 

 

*Efficacy includes effectiveness analyses; P-value derived from Pearson’s Chi-squared Test; 

RCT, Randomized Controlled Trial. 

Table 3 shows select characteristics of the LBD literature; we show the same characteristics as in 

the AAP update (Tables 1 and 2) to demonstrate how characteristics may vary between different 

review topics. The original search results were published from 1966 to 2009 (articles published 

after 2006 were electronically published in 2006). The updated search results were 

predominantly published from 2007 to 2010, with some articles published from 1997 to 2006 

and in 2011. Roughly 10% of the retrieved studies were classified as RCTs in MEDLINE in both 

the original and updated literature searches. As noted in the third column of Table 3, the presence 

of several key variables differed substantially between the original and updated searches in 

univariate comparisons. In particular, the update included non-human studies and proportionally 

fewer articles in which the outcome was associated with drug therapy. This finding suggests that 

the original and updated data were somewhat different, which made creation of a generalizable 

model more difficult. 

 Table 3: Characteristics of LBD search results (Original vs. Updated).  



 

Variable Original 
(Count, 

Proportion) 

Update 
(Count, 

Proportion) 

Comparison of 

Means (p-value)* 

Number of Studies 14,700 7,051  

Year 1997.6 2007.5  

 (range) 1966-2009 1997-2011  

Any Outcome In Title 6478 (0.441) 2431 (0.345) <0.001 

Any Agent In Title 5770 (0.393) 3572 (0.507) <0.001 

Agent & Administration 1364 (0.093) 1218 (0.173) <0.001 

Agent & Therapeutic Use 3900 (0.265) 1916 (0.272) 0.318 

Agent & Toxicity 1149 (0.078) 1046 (0.148) <0.001 

Demographic Tags Include Child 2545 (0.173) 986 (0.140) <0.001 

Outcome & Complications 1187 (0.081) 544 (0.077) 0.363 

Outcome & Drug Therapy 2929 (0.199) 1246 (0.177) <0.001 

Outcome & Prevention 2606 (0.177) 1266 (0.180) 0.691 

Outcome & Psychology 67 (0.005) 29 (0.004) 0.743 

Other Outcome & Psychology 142 (0.010) 76 (0.011) 0.467 

Clinical Trial 1992 (0.136) 277 (0.039) <0.001 

Comparative Study 1711 (0.116) 544 (0.077) <0.001 

Meta-Analysis 88 (0.006) 121 (0.017) <0.001 

RCT 1542 (0.105) 711 (0.101) 0.366 

Text Contains RCT 0.061 0.087 0.000 

 

*P-value derived from Fisher’s Exact Test; RCT, Randomized Controlled Trial 

 

Table 4 shows the original literature search results for LBD in greater detail, and compares 

characteristics among 4 categories (excluded studies, considered only for efficacy/effectiveness 

analyses, considered only for AE analysis, and considered for both AE and efficacy/effectiveness 

analyses). As is clear from the table, none of the predictors function perfectly. However, 

substantial differences exist for multiple variables, which make modeling based on some 

combination of these variables feasible via a regression approach. As expected, the vast majority 

of relevant studies were either meta-analyses or RCTs; in contrast, the results in irrelevant 

studies were occasionally tagged as in vitro or animal studies (not shown). Furthermore, large 

majorities of studies in every included category (efficacy, AE, or both analyses) contained 

indexing information that described the therapeutic use of a preferred intervention or the 

treatment of a preferred outcome. By contrast, relatively few excluded studies contained 

indexing information that linked the therapeutic use of a preferred intervention (0.257) or the 

treatment of a preferred outcome (0.192). As expected, none of the predictors were perfect. 

Table 4. Characteristics of the Original LBD Review (by category of article) 

 



Variable Excluded Efficacy 

only 

AE 

Only 

Both 

Types of 

Outcomes 

Comparison 

of Means 

(p-value)* 

Number of Studies 14318 103 164 115  

Year 1997.5 2001.1 2000.7 2001.4  

Any Outcome In Title 0.433 0.806 0.604 0.8 <0.001 

Any Agent In Title 0.378 0.806 0.963 0.983 <0.001 

Agent & Administration 0.084 0.33 0.5 0.417 <0.001 

Agent & Therapeutic Use 0.253 0.777 0.634 0.809 <0.001 

Agent & Toxicity 0.071 0.097 0.445 0.426 <0.001 

Demographic Tags Include Child 0.177 0.029 0.03 0.043 <0.001 

Outcome & Complications 0.078 0.34 0.043 0.209 <0.001 

Outcome & Drug Therapy 0.188 0.689 0.537 0.661 <0.001 

Outcome & Prevention 0.169 0.67 0.317 0.6 <0.001 

Outcome & Psychology 0.004 0.019 0.006 0 0.13 

Other Outcome & Psychology 0.01 0 0.006 0 0.494 

Clinical Trial 0.116 0.816 0.878 0.887 <0.001 

Comparative Study 0.114 0.126 0.22 0.217 <0.001 

Meta-Analysis 0.005 0.136 0 0 <0.001 

RCT 0.083 0.835 0.902 1 <0.001 

Text Contains RCT 0.052 0.495 0.354 0.461 <0.001 

 

 *Efficacy includes effectiveness analyses; p-value derived from Pearson’s Chi-squared test 

 

Performance Predicting Efficacy/Effectiveness Results 

Predicting Articles Relevant to Efficacy/Effectiveness for AAP Review 

We developed a model for predicting the inclusion of efficacy/effectiveness articles using the 

original search results. Figure 3 shows the relative weights of different variables; variables with 

larger relative weights account for large fractions of the total explanatory power. In keeping with 

some of the differences in frequency distributions between included and excluded studies, "RCT" 

contains a substantial portion of the model’s explanatory power. 



  

Table 5 shows efficacy/effectiveness results for all models (GLMnet, GBM, and hybrid) at 

multiple thresholds. For AAP, all models achieved high sensitivity when predicting on the 

original sample at relatively high thresholds (p≤0.02). For example, the GLMnet-based 

predictive model achieved a sensitivity of 1 and PPV of 0.38 using a threshold of 0.02 for 

predicting relevant articles in the original sample. Achieving good results on the original sample 

was expected because the underlying model was derived from the same outcomes and 

explanatory variables. Applying the GLMnet model to the updated AAP literature search results 

yielded a sensitivity of 0.921 and PPV of 0.185; GBM and hybrid models performed similarly.  

Table 5. Model Performance for Efficacy/Effectiveness  

   GLMnet GBM Hybrid 

Study Phase Threshold Sensitivity PPV Sensitivity PPV Sensitivity PPV 

AAP Original 0.001 1 0.144 1 0.383 1 0.144 

  0.01 1 0.366 1 0.383 1 0.366 

  0.02 1 0.383 1 0.383 1 0.383 

  0.1 1 0.421 0.976 0.476 1 0.418 

 Update 0.001 1 0.066 0.921 0.186 1 0.066 

  0.01 0.921 0.162 0.921 0.186 0.921 0.162 

  0.02 0.921 0.185 0.921 0.187 0.921 0.185 

  0.1 0.901 0.206 0.881 0.232 0.901 0.205 

LBD Original 0.001 1 0.07 1 0.108 1 0.068 

  0.01 0.991 0.143 0.991 0.142 0.991 0.133 

  0.02 0.982 0.174 0.982 0.179 0.986 0.168 

  0.1 0.862 0.322 0.872 0.378 0.894 0.321 

 Update 0.001 1 0.038 0.968 0.06 1 0.037 

  0.01 0.937 0.08 0.889 0.08 0.937 0.075 



  0.02 0.905 0.102 0.889 0.106 0.905 0.098 

  0.1 0.778 0.203 0.635 0.181 0.794 0.192 

*GLMnet, Generalized Linear Models with Convex Penalties; GBM, gradient boosting machine; 

Hybrid, Maximum prediction from either GLMnet or GBM; PPV, Positive predictive value. We 

calculated bootstrapped standard errors for the GLMnet estimates. In all cases, the standard 

errors were substantially smaller (<0.005) than the estimates for sensitivity or PPV.  

Figure 4 shows these results graphically using a histogram of the prediction probabilities for the 

update, divided according to whether the article met final inclusion criteria. Excluded articles 

were predominantly given probabilities very close to zero, while articles considered for 

efficacy/effectiveness had probabilities that spanned the entire spectrum. Of note, this histogram 

displays densities; even small densities of false positive articles (from the much larger group of 

negative articles) entail a relatively high proportion of false positives among model predictions, 

which limits the PPV to 0.185 

 

Predicting Articles Relevant to Efficacy/Effectiveness for LBD Review 

Figure 5 shows the relative weights of variables included in the LBD model of efficacy. As in the 

AAP analysis, terms such as RCT and meta-analysis are important. Clearly, other variables 

carried different weights in the AAP analysis, suggesting that predictive models may need to be 

topic-specific. 



.  

The efficacy/effectiveness results were similar for the LBD review. (Table 5.) The GLMnet-

based predictive model achieved sensitivity of 0.982 and PPV of 0.174 using a threshold of 0.02 

for predicting relevant articles in the original sample. We then tested these results on the updated 

literature search results; GLMnet yielded sensitivity of 0.905 and PPV of 0.102. 

Figure 6 shows model prediction performance on the LBD updated search graphically using a 

histogram of the prediction probabilities. Excluded articles were generally assigned very low 

probabilities. As in Figure 4 (for AAP), the small percentage of false positive articles reduced the 

PPV to 0.102 due to the much greater number of negative articles overall. 

 

Performance Retrieving Articles Considered for AE Analysis 

Predicting AE-relevant articles for AAP update  



We empirically developed a model for predicting AE articles using the original search results. 

We show the relative importance of the same select variables in Figure 7. Again, the "RCT" 

variable remains extremely important, even as the importance of the remaining explanatory 

variables differs from the efficacy/effectiveness models. 

 

We show results from all models in Table 6. The GLMnet-based predictive model achieved a 

sensitivity of 0.978 and PPV of 0.215 using a threshold of 0.02 for predicting articles relevant to 

AEs in the original sample. Applying the GLMnet-based model to the updated literature search 

results yielded a sensitivity of 0.981 and PPV of 0.09. The GBM-based model performed better 

in the original (sensitivity, 1; PPV, 0.274) but worse in the update (sensitivity, 0.895; PPV, 0.11). 

The hybrid model yielded similar sensitivity to the GLMnet model, but worse PPV. 

Table 6. Model Performance for AEs  

   GLMnet GBM Hybrid 

Study Phase Threshold Sensitivity PPV Sensitivity PPV Sensitivity PPV 

AAP Original 0.001 1 0.078 1 0.07 1 0.07 

  0.01 1 0.168 1 0.138 1 0.118 

  0.02 0.978 0.215 1 0.274 1 0.194 

  0.1 0.901 0.392 0.934 0.436 0.956 0.385 

 Update 0.001 1 0.033 1 0.029 1 0.029 

  0.01 0.99 0.065 0.971 0.056 0.99 0.047 

  0.02 0.981 0.09 0.895 0.11 0.981 0.078 

  0.1 0.867 0.172 0.848 0.2 0.886 0.162 

LBD Original 0.001 1 0.065 1 0.073 1 0.057 

  0.01 0.993 0.175 0.975 0.192 0.996 0.166 

  0.02 0.964 0.21 0.971 0.229 0.978 0.203 

  0.1 0.885 0.338 0.903 0.365 0.918 0.328 



 Update 0.001 0.946 0.04 0.957 0.039 0.967 0.033 

  0.01 0.739 0.097 0.674 0.098 0.739 0.09 

  0.02 0.685 0.116 0.663 0.119 0.707 0.112 

  0.1 0.511 0.179 0.478 0.191 0.522 0.167 

*GLMnet, Generalized Linear Models with Convex Penalties; GBM, gradient boosting machine; 

Hybrid, Maximum prediction from either GLMnet or GBM; PPV, Positive predictive value. We 

calculated bootstrapped standard errors for the GLMnet estimates. In all cases, the standard 

errors were substantially smaller (<0.005) than the estimates for sensitivity or PPV. 

Figure 8 shows these results graphically using a histogram of the prediction probabilities, divided 

according to whether the article met final inclusion criteria. Articles not considered for AE 

analyses were predominantly assigned probabilities very close to zero; included articles had 

probabilities that spanned the entire spectrum including the 2% that were assigned a probability 

of inclusion <0.02. 

 

Predicting AE-relevant articles for LBD update  

Figure 9 shows key variables for this analysis. By inspection, these importance weights do not 

appear extremely dissimilar to those from the AAP analysis.  



 

The GLMnet-based predictive model achieved a sensitivity of 0.964 and PPV of 0.21 using a 

threshold of 0.02 for predicting articles relevant for the AE analysis in the original LBD review. 

(Table 6.) However, we were able to predict AE-relevant articles with a substantially reduced 

sensitivity (0.685) when compared to the AAP results. Reducing the threshold substantially (i.e. 

retaining all articles with p ≥0.001) would increase sensitivity to 0.946 but decrease PPV to 0.04. 

Our results for GBM-based and hybrid models were not substantially better at threshold p ≥0.02, 

with the hybrid model achieving sensitivity of 0.707 and PPV of 0.112.  

Figure 10 shows these results graphically as many AE articles relevant to the LBD update were 

assigned relatively low prediction probabilities. In fact, 11.6% of AE-relevant articles were 

assigned probabilities <0.005. When we examined missed AE articles, we noted that there were 

relatively few relevant large observational studies (cohort and case-control studies) in the 

original review. As a result, the LBD model assigned lower probabilities to observational studies 

in the update as well. However, observational studies were more important in the update because 

the SPEPC researchers focused on several newly identified AEs that were largely studied in 

cohort and case-control studies. 



 

Performance Predicting Any Relevant Result and Potential Workload Reductions 

The workflow in many AHRQ systematic reviews includes a first step in which reviewers select 

all articles that might be relevant to AEs or efficacy, and as the second step, a process that 

reviews the full text of articles to determine their relevance to efficacy/effectiveness or AE 

analyses. To simulate how our approach might improve the workflow for updates, we 

determined the GLMnet-based model's sensitivity and PPV at various thresholds for retrieving 

all AE and efficacy/effectiveness analyses. Sensitivity and PPV for a particular threshold were 

determined by selecting articles if the maximum predicted relevance from either model 

(efficacy/effectiveness or AE) exceeded the threshold.  

Table 7. GLMnet Model Performance in Retrieving Any Relevant Article (AAP Update) 

Prediction 

Threshold 

True 

Positives 

False 

Negatives 

Sensitivity Total 

Screening 

Burden 

Screening 

Saved 

(%) 

0 116 0 1 3,591 0 

0.001 116 0 1 3,237 9.9 

0.005 115 1 0.991 2,191 39 

0.01 115 1 0.991 1,601 55.4 

0.015 114 2 0.983 1,312 63.5 

0.02 113 3 0.974 1,144 68.1 

0.025 112 4 0.966 1,026 71.4 



0.05 106 10 0.914 737 79.5 

0.1 102 14 0.879 549 84.7 

0.2 95 21 0.819 452 87.4 

0.3 89 27 0.767 366 89.8 

0.4 88 28 0.759 308 91.4 

 

We show how sensitivity and the number needed to screen change as the threshold changes in 

Table 7. (We do not show sensitivities < 0.75 as these results are unlikely to be useful to 

systematic review researchers.) We selected a threshold of p≥0.01 based on the performance of 

the model in the original search results, in which a threshold of p≥0.01 yielded perfect sensitivity 

with 58.1% of screening saved. When we applied this threshold to the update predictions, the 

projected sensitivity model exceeded 0.99, whereas the proportion of title/abstract screening 

saved was 55.4% or 1990/3591 articles. The total number of articles to be screened was reduced 

from 3,591 to 1,601. By contrast, the hybrid model had identical sensitivity, but more limited 

workload reductions at the same threshold (p≥0.01). 

Table 8. GLMnet Model Performance in Retrieving Any Relevant Article (LBD Update) 

Prediction 

Threshold 

True 

Positives 

False 

Negatives 

Sensitivity Total 

Screening 

Burden 

Screening 

Saved 

(%) 

0 127 0 1 7,051 0 

0.001 127 0 1 2,597 63.2 

0.005 117 10 0.921 1,180 83.3 

0.01 107 20 0.843 882 87.5 

0.015 102 25 0.803 749 89.4 

0.02 101 26 0.795 678 90.4 

0.025 101 26 0.795 630 91.1 

The GLMnet-based model for LBD performed worse, in that the model selected articles for the 

update with a sensitivity of 0.795 at a threshold of p≥0.02 (compared to 0.974 for AAP). (Tables 

7 and 8.) However, this approach still provided potential benefits once we selected a suitable 

threshold. We chose a threshold of p≥0.001 based on the performance of the model in the 

original search results, in which a threshold of p≥0.001 yielded perfect sensitivity with 66.8% of 

screening saved. Using the same threshold when evaluating results in the update yielded perfect 

sensitivity accompanying the drop in the projected article screening burden from 7,051 to 2,597 

(63.2%). While the probability thresholds differed between the AAP and LBD models (0.001 in 

LBD and 0.01 in AAP), both thresholds could be derived from the original modeling process. 

We show these results graphically using ROC curves. (Figures 11 and 12). The AUC for the 

GLMnet method (in the AAP study) was 0.943 (95% CI: 0.927- 0.960) vs. 0.925 (95% CI: 

0.899-0.950) with GBM. The p-value for null hypothesis of equality was 0.007. Similarly, the 

AUC for the GLMnet method (in the LBD study) was 0.954 (95% CI: 0.943-0.965) vs. 0.947 



(95% CI: 0.933 -0.961) for GBM. In the LBD study, p-value for null hypothesis of equality was 

0.06. Both results suggest that the ROC curves differed between the two studies; in addition, 

GLMnet seems to perform somewhat better than GBM visually as well. Still, it would be 

difficult to establish GLMnet’s superiority in this context (systematic reviewing updating) 

without further studies. 

 

 

Evaluation of Model Prediction Errors 
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Figure 11. ROC Curve for Classifying AAP Articles
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SCEPC researchers independently evaluated articles in the update that were included in the final 

reports but were assigned low probability scores by the statistical classifiers. We initially chose a 

probability threshold (p≥0.02) that reduced workload substantially; however, this threshold 

entailed 29 false negatives. Nearly all false negatives were non-RCT studies (along with an RCT 

that was not tagged as such by MEDLINE). Of the 29 false negatives (at threshold p≥0.02 from 

both updates), 26 were from the LBD update. The LBD model missed one RCT because the drug 

of interest ("raloxifene") was tagged with "pharmacology" and not a more revealing subheading. 

The remaining LBD false-negatives were non-RCT studies (including meta-analyses, case-

control studies, retrospective analyses of claims databases, case-control studies, and analyses of 

government registries). It is difficult to determine whether similar studies were present in the 

original data without actually re-reading all earlier studies, but we did note that words such as 

"cohort" and "database" were poorly represented among both included and excluded studies in 

the original LBD report. 

In considering the models used to predict inclusion of any relevant articles (Tables 7 and 8), just 

one article (from the AAP update) would have been excluded 
26

. This article was likely assigned 

a low probability because it was tagged as a letter although it reported on a clinical trial. Of note, 

despite missing this trial using machine learning, EPC researchers might have been able to 

retrieve this trial because it was referenced in a relevant article and would plausibly have been 

caught using the researchers’ analyses of references accepted in the final reports.
27

 

EPC researchers also evaluated several citations that were assigned high relevance probabilities 

but were deemed irrelevant by the original systematic review researchers; none of these 

decisions changed on re-evaluation. These studies included one small RCT on calcitriol (that did 

not report fracture outcomes) and another RCT in a modest sized specialized population 

(Parkinson's patients) 
28, 29

. 

Discussion 

In this report we utilized the large numbers of previously screened documents for a systematic 

review to develop a model that predicted whether citations retrieved for an update search would 

have met final inclusion criteria for the update. We tested several approaches based on the GBM 

and GLMnet statistical methods. Our approach achieved its best performance predicting 

relevance for efficacy/effectiveness articles; it performed worse when predicting articles relevant 

to the AE analysis for the LBD update. However, we estimated that these algorithms could 

reduce workload associated with screening updated search results for relevant 

efficacy/effectiveness and AE articles by more than 50% with minimal or no loss of relevant 

articles. 

Evaluating model performance  

Performance was similar when screening AAP citations for those relevant to 

efficacy/effectiveness and AE analyses. However, in the LBD analysis, we achieved 

substantially higher PPV for the same levels of sensitivity when predicting whether citations 

were relevant for the efficacy/effectiveness analyses as opposed to the AE analysis. Prior work 

has not focused heavily on AEs, so the benchmark is unclear here. However, we speculate that 

many of these false negatives can be attributed to the changed criteria for relevant AE citations. 

Initially, most of the articles relevant to AEs were RCTs because epidemiologic studies and 

retrospective database analyses are difficult to conduct prior to widespread use. Therefore, in 

some studies (such as LBD), relevant citations in the original data set may consist (almost 



entirely) of RCTs; this does not present a problem if researchers want only want RCTs in the 

update. However, the paucity of relevant non-RCT studies in the original data could limit the 

ability of the model to efficiently retrieve relevant non-RCT studies. 

Model performance was fairly similar between the GBM, GLMnet, and hybrid approaches, 

despite their substantial theoretical differences. This suggests that underlying data limitations 

may pose a more substantial challenge than model selection in the future. 

Our results concur with prior attempts at using machine learning to facilitate systematic review 

collection; those studies successfully used manually classified citations to predict inclusion in 

unclassified studies
14-16

. These efforts were met with substantial success, particularly Wallace's 

(2010) active learning model, which achieved 50% workload reductions and 100% sensitivity. 

Previous studies used all indexing and text terms when employing statistical algorithms to 

classify documents. They also relied mainly on statistical methods to reduce the dimensionality 

of the feature vectors used to classify articles 
14, 16

. The advantage of the prior approach is that 

little or no upfront investment is required outside of collecting an original data set. For a de novo 

search, removing upfront workload offers some advantages. 

In contrast to prior studies, we adopted a more structured, parsimonious approach that focused on 

indexing few terms related to study design characteristics (publication type, demographic groups, 

and statistical design), intervention-specific characteristics, and outcome-specific characteristics. 

However, for many systematic review updates, research librarians have already invested 

substantial time in creating optimal search strategies; we leveraged this effort using a prototype 

that automatically parses previously created search strategies to locate key indexing terms. 

Furthermore, the vast majority of work was involved in creating the training data, which had 

already been completed. Therefore, the additional cost of making explanatory variables 

applicable to each new review was relatively small when performing this simulated systematic 

review update. 

Furthermore, our algorithms explicitly dealt with updating, which afforded us far more initial 

training data than active learning models. However, our approach needed to surmount several 

new challenges because we needed to predict updated citations even though the literature was 

different, the reviewers changed, the search strategies changed, and (possibly) some of the 

underlying goals changed. Achieving similar levels of success suggests benefits to the structured 

approach of incorporating knowledge about key interventions and outcomes. In addition, this 

approach allows us to separate efficacy/effectiveness and AE analyses; although most 

comparative effectiveness reviews do not separate these analyses, independent filtering 

mechanisms may be of interest to other researchers. 

Workload reductions 

For researchers seeking both AE and efficacy-relevant citations, we were able to remove 

approximately 50% of articles with loss of 1/116 articles for AAP and 0/127 articles of LBD. 

Clearly the false positive rate is high (~50%) but this process still could provide substantial value 

to researchers. One potential problem is that researchers conducting systematic review aim for 

100% sensitivity; despite the high sensitivity rates achieved, the loss of one article suggests that 

researchers will have to make some tradeoffs between sensitivity and efficiency as it will be 

difficult to guarantee 100% sensitivity without excessively high false positive rates. On the other 

hand, it is unclear whether human reviewers can guarantee perfect sensitivity using current 

processes. In addition, other methods (such as reference mining) can be used to raise sensitivity 



further. In this case, the missed reference might have been found by searching among references 

for included articles. 

Our results also suggest possible improvements as well. The classifier’s false negatives were 

more related to indexing variability than to model development. This observation suggests that 

capturing additional key variables might be more helpful than further statistical development. 

One method of doing so would be to use text features to improve capture of study design details, 

such as RCT design or meta-analysis. We used limited text features in generating predictions, but 

we anticipate that adding features from the entire text would be helpful, much as other machine 

learning document classification systems have done. While this method has been used solely in 

updating, adding more features could assist with de novo reviews as well.  

Implication for EPC Processes 

The results we present show that workload associated with updating could be substantially 

reduced if earlier classification decisions were used to reduce the workload involved in screening 

articles. We estimated that roughly 50% of title/abstract screening might be rendered 

unnecessary using a predictive model to reduce the screening burden. However, several 

outstanding issues need to be resolved prior to making these tools widely available. 

First, the classifier relied on extremely well tabulated data (database identifier, decision 

regarding relevance to efficacy/effectiveness analyses, decision regarding relevance to AE 

analysis). If this data tabulation was not conducted initially, creating a machine learning model 

would be unlikely to be cost-effective as excessive effort would be required to format the data 

properly. 

 

Second, although our statistical model relied on dozens of citation characteristics, it was very 

sensitive to MEDLINE’s publication type field and MEDLINE indexing generally. NLM 

validates MEDLINE indexing against its own internal criteria and is responsive to re-indexing 

requests 
30

. However, NLM’s criteria did not match our criteria perfectly, which made model 

predictions less accurate. Several authors associated with the EPC group independently assessed 

false negatives (relevant citations that the model assigned a low probability of inclusion); 

typically, the low prediction probabilities for these included articles were due to problematic 

MEDLINE indexing of the publication type field. If such discrepancies could be accounted for, 

our other encouraging results suggest that this document classification prototype could be used to 

improve the efficiency of systematic review updating. To that end, we are developing techniques 

for extracting information from the text to allow for greater consistency in determining the 

publication type (from our perspective) and other variables independent of MEDLINE indexing. 

Finally, these systems currently work only with fully indexed PubMed citations. One mitigating 

factor is that the vast majority of relevant articles are located in PubMed. As described in greater 

detail below, we plan to generalize this model to articles lacking MEDLINE indexing by 

developing additional text analysis tools. 

Future Research 

1. Systematic review methodologists will need to agree on a common data format, as these data 

are much more easily accumulated over time than reconstructed later. At a minimum, the 

following elements are needed: data source (MEDLINE, EMBASE, PsycInfo, etc); source-

specific identifier (e.g., PMID); study-specific identifier (e.g., LBD #1034); inclusion in final 



report for efficacy/effectiveness or AE analyses (or both); and title/abstract (if not in 

MEDLINE). Other information, e.g., inclusion after first stage screening and reason for 

exclusion from final study (if excluded) would be helpful as well. 

2. The current model was built entirely upon MEDLINE classifications. Clearly, this 

characteristic would result in delaying the classification of newer articles. If reviews are being 

conducted every 2-3 years, this limitation would exclude only a small percentage of articles from 

the analysis (and leave them entirely for human review). However, if researchers wished to 

update reviews continuously (or monthly) and use citations from non-MEDLINE databases (such 

as EMBASE), absent or delayed MEDLINE indexing would render MEDLINE-only modeling 

inadequate. Further research on adding structured text characteristics to the statistical model 

would be helpful. Adding more (and presumably useful) features would improve accuracy as 

well. Others have used loosely structured text features when classifying documents for 

systematic reviews. 
14, 16

 The underlying hypothesis in these studies is that term frequencies will 

differ between relevant and irrelevant documents. For example, a relevant document might be 

more likely to contain the phrases "randomized trial" or "RCT", whereas an irrelevant article 

might contain words such as "mouse" or "case-control." One can then use statistical algorithms 

(such as GBM or SVM) to model relevance as a function of these many text features.  

A modified approach using both text- and MeSH-derived features could be helpful. For example, 

one could classify citations that lack MEDLINE indexing by determining whether their text 

features are most similar to articles that are predicted to be highly irrelevant or to those that are 

predicted to be highly relevant (among MEDLINE-indexed articles). Using these shared text 

features, the MeSH indexing could be leveraged to provide additional information to articles 

lacking indexing. 

3. We will need to test our models on additional systematic reviews and on non-therapeutic 

applications.  

4. We will examine whether training data can be used across systematic review topics, if the 

underlying inclusion criteria are similar enough. This experiment has been attempted before but 

has not been applied to true updating 
31

. If this attempt is successful, we could vastly increase the 

volume of useful training data at our disposal.  

5. Wallace et al.’s (2010) active learning model could be adapted to perform in the updating 

context as well. For example, we could generate predictions for updated data and sample 

predicted relevant articles in a stratified fashion – i.e., all articles in the updated search predicted 

to be highly relevant and a sample of indeterminate and lower-ranked citations. The model could 

then be re-run using these new training data to generate a new model. This effort would offer two 

advantages: a) Newer models could account for changes in the literature; and b) less reviewer 

time would be wasted because many of the reviewed articles would likely be relevant and require 

review.  

6. Finally, we identified a small false negative rate associated with our approach (as with any 

method including human coding). We will test methods for using the references of included 

reports to identify previously missed reports.  

Conclusions 

We created a prototype system that classified PubMed literature search results from two 

simulated systematic review updates using a statistical model that was empirically derived from 



earlier literature classification decisions. Future research is needed on expanding both the scope 

and the accuracy of this method by analyzing the raw text of titles and abstracts. A more refined 

system could allow researchers to update their reviews more frequently and efficiently. 
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